A peer-to-peer renewable energy trading platform that enables households and businesses with solar panels, wind turbines, or other renewable energy sources to trade excess energy directly with consumers. Built on blockchain technology to ensure transparent, automated, and efficient energy transactions.
The platform integrates with IoT smart meters for real-time energy production and consumption monitoring, uses machine learning for demand forecasting, and implements smart contracts for automated energy certificate trading. This democratizes energy markets and accelerates the transition to renewable energy.
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ β Energy Producersβ β Smart Contractsβ β Energy Consumersβ β β β β β β β β’ Solar Panels βββββΊβ β’ Trading βββββΊβ β’ Households β β β’ Wind Turbinesβ β β’ Certificates β β β’ Businesses β β β’ Hydro Power β β β’ Settlements β β β’ Industries β β β’ Battery Storeβ β β’ Governance β β β’ EV Charging β βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ β β β βΌ βΌ βΌ βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ β IoT Devices β β ML Algorithms β β Grid Operator β β β β β β β β β’ Smart Meters β β β’ Demand Pred. β β β’ Load Balance β β β’ Weather Sensβ β β’ Price Optim. β β β’ Grid Stabilityβ β β’ Production β β β’ Anomaly Det. β β β’ Regulations β β β’ Consumption β β β’ Forecasting β β β’ Compliance β βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ β β β βΌ βΌ βΌ βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ β Data Layer β β Trading Engine β β User Interface β β β β β β β β β’ Time Series β β β’ Order Match β β β’ Web Portal β β β’ Energy Data β β β’ Settlement β β β’ Mobile App β β β’ Market Data β β β’ Risk Mgmt β β β’ Analytics β β β’ Weather Data β β β’ Clearing β β β’ Dashboards β βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
Direct energy trading between producers and consumers without intermediaries.
Seamless integration with existing electrical grid infrastructure.
Blockchain-based renewable energy certificates for carbon tracking.
AI-powered forecasting for optimal energy production and consumption.
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
contract EnergyTrading {
struct EnergyOffer {
address producer;
uint256 energyAmount; // in kWh
uint256 pricePerKWh; // in wei
uint256 timestamp;
bool isActive;
}
struct EnergyDemand {
address consumer;
uint256 energyNeeded;
uint256 maxPricePerKWh;
uint256 timestamp;
bool isFulfilled;
}
mapping(uint256 => EnergyOffer) public offers;
mapping(uint256 => EnergyDemand) public demands;
mapping(address => uint256) public energyBalances;
event EnergyTraded(
address indexed producer,
address indexed consumer,
uint256 energyAmount,
uint256 totalPrice
);
function createOffer(
uint256 _energyAmount,
uint256 _pricePerKWh
) external returns (uint256) {
require(_energyAmount > 0, "Energy amount must be positive");
require(_pricePerKWh > 0, "Price must be positive");
uint256 offerId = uint256(keccak256(abi.encodePacked(
msg.sender, _energyAmount, block.timestamp
)));
offers[offerId] = EnergyOffer({
producer: msg.sender,
energyAmount: _energyAmount,
pricePerKWh: _pricePerKWh,
timestamp: block.timestamp,
isActive: true
});
return offerId;
}
function matchEnergyTrade(
uint256 _offerId,
uint256 _demandId
) external {
EnergyOffer storage offer = offers[_offerId];
EnergyDemand storage demand = demands[_demandId];
require(offer.isActive, "Offer not active");
require(!demand.isFulfilled, "Demand already fulfilled");
require(offer.pricePerKWh <= demand.maxPricePerKWh, "Price mismatch");
uint256 tradeAmount = min(offer.energyAmount, demand.energyNeeded);
uint256 totalPrice = tradeAmount * offer.pricePerKWh;
// Execute trade
offer.energyAmount -= tradeAmount;
demand.energyNeeded -= tradeAmount;
if (offer.energyAmount == 0) offer.isActive = false;
if (demand.energyNeeded == 0) demand.isFulfilled = true;
// Transfer payment
payable(offer.producer).transfer(totalPrice);
emit EnergyTraded(offer.producer, demand.consumer, tradeAmount, totalPrice);
}
}
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
import joblib
class EnergyDemandPredictor:
def __init__(self):
self.model = RandomForestRegressor(n_estimators=100, random_state=42)
self.scaler = StandardScaler()
self.feature_columns = [
'hour', 'day_of_week', 'month', 'temperature',
'humidity', 'solar_irradiance', 'wind_speed',
'historical_demand_1h', 'historical_demand_24h'
]
def prepare_features(self, data):
"""Prepare features for model training/prediction"""
features = pd.DataFrame()
# Time-based features
features['hour'] = data.index.hour
features['day_of_week'] = data.index.dayofweek
features['month'] = data.index.month
# Weather features
features['temperature'] = data['temperature']
features['humidity'] = data['humidity']
features['solar_irradiance'] = data['solar_irradiance']
features['wind_speed'] = data['wind_speed']
# Historical demand features
features['historical_demand_1h'] = data['demand'].shift(1)
features['historical_demand_24h'] = data['demand'].shift(24)
return features.fillna(method='bfill')
def train(self, historical_data):
"""Train the demand prediction model"""
features = self.prepare_features(historical_data)
target = historical_data['demand']
# Remove rows with NaN values
mask = ~(features.isnull().any(axis=1) | target.isnull())
features_clean = features[mask]
target_clean = target[mask]
# Scale features
features_scaled = self.scaler.fit_transform(features_clean)
# Train model
self.model.fit(features_scaled, target_clean)
# Save model
joblib.dump(self.model, 'energy_demand_model.pkl')
joblib.dump(self.scaler, 'feature_scaler.pkl')
def predict(self, current_data, hours_ahead=24):
"""Predict energy demand for next N hours"""
predictions = []
for h in range(hours_ahead):
features = self.prepare_features(current_data)
features_scaled = self.scaler.transform(features.iloc[-1:])
prediction = self.model.predict(features_scaled)[0]
predictions.append(prediction)
# Update current_data with prediction for next iteration
next_timestamp = current_data.index[-1] + pd.Timedelta(hours=1)
current_data.loc[next_timestamp, 'demand'] = prediction
return np.array(predictions)
Equivalent to removing 3,200 cars from roads annually
Of total energy traded on the platform
New installations incentivized by the platform