Renewable Energy Trading Platform

Startup Project - Green Energy Initiative

Solidity
Python
Django
IoT
Machine Learning
Smart Meters
Renewable Energy

Project Overview

A peer-to-peer renewable energy trading platform that enables households and businesses with solar panels, wind turbines, or other renewable energy sources to trade excess energy directly with consumers. Built on blockchain technology to ensure transparent, automated, and efficient energy transactions.

The platform integrates with IoT smart meters for real-time energy production and consumption monitoring, uses machine learning for demand forecasting, and implements smart contracts for automated energy certificate trading. This democratizes energy markets and accelerates the transition to renewable energy.

Platform Architecture

Energy Trading Ecosystem


β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Energy Producersβ”‚    β”‚  Smart Contractsβ”‚    β”‚ Energy Consumersβ”‚
β”‚                 β”‚    β”‚                 β”‚    β”‚                 β”‚
β”‚  β€’ Solar Panels │◄──►│  β€’ Trading      │◄──►│  β€’ Households   β”‚
β”‚  β€’ Wind Turbinesβ”‚    β”‚  β€’ Certificates β”‚    β”‚  β€’ Businesses   β”‚
β”‚  β€’ Hydro Power β”‚    β”‚  β€’ Settlements  β”‚    β”‚  β€’ Industries   β”‚
β”‚  β€’ Battery Storeβ”‚    β”‚  β€’ Governance   β”‚    β”‚  β€’ EV Charging  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚                        β”‚                        β”‚
         β–Ό                        β–Ό                        β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   IoT Devices   β”‚    β”‚  ML Algorithms  β”‚    β”‚   Grid Operator β”‚
β”‚                 β”‚    β”‚                 β”‚    β”‚                 β”‚
β”‚  β€’ Smart Meters β”‚    β”‚  β€’ Demand Pred. β”‚    β”‚  β€’ Load Balance β”‚
β”‚  β€’ Weather Sensβ”‚    β”‚  β€’ Price Optim. β”‚    β”‚  β€’ Grid Stabilityβ”‚
β”‚  β€’ Production   β”‚    β”‚  β€’ Anomaly Det. β”‚    β”‚  β€’ Regulations  β”‚
β”‚  β€’ Consumption  β”‚    β”‚  β€’ Forecasting  β”‚    β”‚  β€’ Compliance   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚                        β”‚                        β”‚
         β–Ό                        β–Ό                        β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Data Layer    β”‚    β”‚  Trading Engine β”‚    β”‚  User Interface β”‚
β”‚                 β”‚    β”‚                 β”‚    β”‚                 β”‚
β”‚  β€’ Time Series  β”‚    β”‚  β€’ Order Match  β”‚    β”‚  β€’ Web Portal   β”‚
β”‚  β€’ Energy Data  β”‚    β”‚  β€’ Settlement   β”‚    β”‚  β€’ Mobile App   β”‚
β”‚  β€’ Market Data  β”‚    β”‚  β€’ Risk Mgmt    β”‚    β”‚  β€’ Analytics    β”‚
β”‚  β€’ Weather Data β”‚    β”‚  β€’ Clearing     β”‚    β”‚  β€’ Dashboards   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
            

Blockchain Layer

  • β€’ Energy Trading: P2P energy transactions
  • β€’ Certificates: Renewable energy credits (RECs)
  • β€’ Settlement: Automated payment processing
  • β€’ Governance: Platform parameter voting

IoT Integration

  • β€’ Smart Meters: Real-time energy monitoring
  • β€’ Weather Sensors: Production forecasting
  • β€’ Grid Sensors: Network stability monitoring
  • β€’ Storage Systems: Battery management

AI & Analytics

  • β€’ Demand Prediction: ML-based consumption forecasts
  • β€’ Price Optimization: Dynamic pricing algorithms
  • β€’ Anomaly Detection: Fraud and error detection
  • β€’ Grid Optimization: Load balancing algorithms

Platform Features

P2P Energy Trading

Direct energy trading between producers and consumers without intermediaries.

  • β€’ Real-time energy marketplace
  • β€’ Automated matching algorithms
  • β€’ Dynamic pricing based on supply/demand
  • β€’ Instant settlement via smart contracts

Smart Grid Integration

Seamless integration with existing electrical grid infrastructure.

  • β€’ Grid stability monitoring
  • β€’ Load balancing optimization
  • β€’ Demand response programs
  • β€’ Emergency backup systems

Energy Certificates

Blockchain-based renewable energy certificates for carbon tracking.

  • β€’ Automated REC generation
  • β€’ Carbon footprint tracking
  • β€’ Compliance reporting
  • β€’ Environmental impact metrics

Predictive Analytics

AI-powered forecasting for optimal energy production and consumption.

  • β€’ Weather-based production forecasts
  • β€’ Consumption pattern analysis
  • β€’ Price prediction models
  • β€’ Maintenance scheduling

Technical Implementation

Smart Contract - Energy Trading

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

contract EnergyTrading {
    struct EnergyOffer {
        address producer;
        uint256 energyAmount; // in kWh
        uint256 pricePerKWh;  // in wei
        uint256 timestamp;
        bool isActive;
    }
    
    struct EnergyDemand {
        address consumer;
        uint256 energyNeeded;
        uint256 maxPricePerKWh;
        uint256 timestamp;
        bool isFulfilled;
    }
    
    mapping(uint256 => EnergyOffer) public offers;
    mapping(uint256 => EnergyDemand) public demands;
    mapping(address => uint256) public energyBalances;
    
    event EnergyTraded(
        address indexed producer,
        address indexed consumer,
        uint256 energyAmount,
        uint256 totalPrice
    );
    
    function createOffer(
        uint256 _energyAmount,
        uint256 _pricePerKWh
    ) external returns (uint256) {
        require(_energyAmount > 0, "Energy amount must be positive");
        require(_pricePerKWh > 0, "Price must be positive");
        
        uint256 offerId = uint256(keccak256(abi.encodePacked(
            msg.sender, _energyAmount, block.timestamp
        )));
        
        offers[offerId] = EnergyOffer({
            producer: msg.sender,
            energyAmount: _energyAmount,
            pricePerKWh: _pricePerKWh,
            timestamp: block.timestamp,
            isActive: true
        });
        
        return offerId;
    }
    
    function matchEnergyTrade(
        uint256 _offerId,
        uint256 _demandId
    ) external {
        EnergyOffer storage offer = offers[_offerId];
        EnergyDemand storage demand = demands[_demandId];
        
        require(offer.isActive, "Offer not active");
        require(!demand.isFulfilled, "Demand already fulfilled");
        require(offer.pricePerKWh <= demand.maxPricePerKWh, "Price mismatch");
        
        uint256 tradeAmount = min(offer.energyAmount, demand.energyNeeded);
        uint256 totalPrice = tradeAmount * offer.pricePerKWh;
        
        // Execute trade
        offer.energyAmount -= tradeAmount;
        demand.energyNeeded -= tradeAmount;
        
        if (offer.energyAmount == 0) offer.isActive = false;
        if (demand.energyNeeded == 0) demand.isFulfilled = true;
        
        // Transfer payment
        payable(offer.producer).transfer(totalPrice);
        
        emit EnergyTraded(offer.producer, demand.consumer, tradeAmount, totalPrice);
    }
}

ML Model - Demand Forecasting

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
import joblib

class EnergyDemandPredictor:
    def __init__(self):
        self.model = RandomForestRegressor(n_estimators=100, random_state=42)
        self.scaler = StandardScaler()
        self.feature_columns = [
            'hour', 'day_of_week', 'month', 'temperature', 
            'humidity', 'solar_irradiance', 'wind_speed',
            'historical_demand_1h', 'historical_demand_24h'
        ]
    
    def prepare_features(self, data):
        """Prepare features for model training/prediction"""
        features = pd.DataFrame()
        
        # Time-based features
        features['hour'] = data.index.hour
        features['day_of_week'] = data.index.dayofweek
        features['month'] = data.index.month
        
        # Weather features
        features['temperature'] = data['temperature']
        features['humidity'] = data['humidity']
        features['solar_irradiance'] = data['solar_irradiance']
        features['wind_speed'] = data['wind_speed']
        
        # Historical demand features
        features['historical_demand_1h'] = data['demand'].shift(1)
        features['historical_demand_24h'] = data['demand'].shift(24)
        
        return features.fillna(method='bfill')
    
    def train(self, historical_data):
        """Train the demand prediction model"""
        features = self.prepare_features(historical_data)
        target = historical_data['demand']
        
        # Remove rows with NaN values
        mask = ~(features.isnull().any(axis=1) | target.isnull())
        features_clean = features[mask]
        target_clean = target[mask]
        
        # Scale features
        features_scaled = self.scaler.fit_transform(features_clean)
        
        # Train model
        self.model.fit(features_scaled, target_clean)
        
        # Save model
        joblib.dump(self.model, 'energy_demand_model.pkl')
        joblib.dump(self.scaler, 'feature_scaler.pkl')
    
    def predict(self, current_data, hours_ahead=24):
        """Predict energy demand for next N hours"""
        predictions = []
        
        for h in range(hours_ahead):
            features = self.prepare_features(current_data)
            features_scaled = self.scaler.transform(features.iloc[-1:])
            
            prediction = self.model.predict(features_scaled)[0]
            predictions.append(prediction)
            
            # Update current_data with prediction for next iteration
            next_timestamp = current_data.index[-1] + pd.Timedelta(hours=1)
            current_data.loc[next_timestamp, 'demand'] = prediction
        
        return np.array(predictions)

Platform Impact

25%
Energy Cost Reduction
40%
Renewable Adoption
10K+
Active Participants
5GWh
Energy Traded

Environmental Impact

15,000
Tons COβ‚‚ Reduced

Equivalent to removing 3,200 cars from roads annually

85%
Renewable Energy Share

Of total energy traded on the platform

200+
Solar Installations

New installations incentivized by the platform